
Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 1 -

Sorting

Chapter 11

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 2 -

Sorting

Ø We have seen the advantage of sorted data
representations for a number of applications
q Sparse vectors

q Maps

q Dictionaries

Ø Here we consider the problem of how to efficiently
transform an unsorted representation into a sorted
representation.

Ø We will focus on sorted array representations.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 3 -

Sorting Algorithms
Ø Comparison Sorting

q Selection Sort

q Bubble Sort

q  Insertion Sort

q Merge Sort

q Heap Sort

q Quick Sort

Ø  Linear Sorting
q Counting Sort

q Radix Sort

q Bucket Sort

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 4 -

Comparison Sorts

Ø Comparison Sort algorithms sort the input by successive
comparison of pairs of input elements.

Ø Comparison Sort algorithms are very general: they
make no assumptions about the values of the input
elements.

4 3 7 11 2 2 1 3 5

 e.g.,3 !11?

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 5 -

Sorting Algorithms and Memory

Ø Some algorithms sort by swapping elements within the
input array

Ø Such algorithms are said to sort in place, and require
only O(1) additional memory.

Ø Other algorithms require allocation of an output array into
which values are copied.

Ø  These algorithms do not sort in place, and require O(n)
additional memory.

4 3 7 11 2 2 1 3 5

swap

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 6 -

Stable Sort

Ø A sorting algorithm is said to be stable if the ordering of
identical keys in the input is preserved in the output.

Ø  The stable sort property is important, for example, when
entries with identical keys are already ordered by
another criterion.

Ø  (Remember that stored with each key is a record
containing some useful information.)

4 3 7 11 2 2 1 3 5

1 2 2 3 3 4 5 7 11

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 7 -

Selection Sort

Ø Selection Sort operates by first finding the smallest
element in the input list, and moving it to the output list.

Ø  It then finds the next smallest value and does the same.

Ø  It continues in this way until all the input elements have
been selected and placed in the output list in the correct
order.

Ø Note that every selection requires a search through the
input list.

Ø  Thus the algorithm has a nested loop structure

Ø Selection Sort Example

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 8 -

Selection Sort
for i = 0 to n-1

 A[0…i-1] contains the i smallest keys in sorted order.
 A[i…n-1] contains the remaining keys

 jmin = i

 for j = i+1 to n-1

 if A[j] < A[jmin]

 jmin = j

 swap A[i] with A[jmin]

 O(n ! i !1)

T(n) = n ! i !1()

i=0

n!1

" = i
i=0

n!1

" = O(n2)

Running time?

LI:

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 9 -

Bubble Sort

Ø Bubble Sort operates by successively comparing
adjacent elements, swapping them if they are out of
order.

Ø At the end of the first pass, the largest element is in the
correct position.

Ø A total of n passes are required to sort the entire array.

Ø  Thus bubble sort also has a nested loop structure

Ø Bubble Sort Example

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 10 -

Expert Opinion on Bubble Sort

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 11 -

Bubble Sort

for i = n-1 downto 1

 A[i+1…n-1] contains the n-i-1 largest keys in sorted order.
 A[0…i] contains the remaining keys

 for j = 0 to i-1

 if A[j] > A[j + 1]

 swap A[j] and A[j + 1]

 O(i)

T(n) = i

i=1

n!1

" = O(n2)

Running time?

LI:

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 12 -

Comparison

Ø  Thus both Selection Sort and Bubble Sort have O(n2)
running time.

Ø However, both can also easily be designed to
q Sort in place

q Stable sort

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 13 -

Insertion Sort

Ø  Like Selection Sort, Insertion Sort maintains two sublists:
q  A left sublist containing sorted keys

q  A right sublist containing the remaining unsorted keys

Ø  Unlike Selection Sort, the keys in the left sublist are not the smallest
keys in the input list, but the first keys in the input list.

Ø  On each iteration, the next key in the right sublist is considered, and
inserted at the correct location in the left sublist.

Ø  This continues until the right sublist is empty.

Ø  Note that for each insertion, some elements in the left sublist will in
general need to be shifted right.

Ø  Thus the algorithm has a nested loop structure

Ø  Insertion Sort Example

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 14 -

Insertion Sort
for i = 1 to n-1

 A[0…i-1] contains the first i keys of the input in sorted order.
 A[i…n-1] contains the remaining keys

 key = A[i]

 j = i

 while j > 0 & A[j-1] > key

 A[j] ß A[j-1]

 j = j-1

 A[j] = key

 O(i)

T(n) = i

i=1

n!1

" = O(n2)

Running time?

LI:

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 15 -

Comparison

Ø Selection Sort

Ø Bubble Sort

Ø  Insertion Sort
q Sort in place

q Stable sort

q But O(n2) running time.

Ø Can we do better?

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 16 -

Divide-and-Conquer

Ø  Divide-and conquer is a general algorithm design paradigm:
q  Divide: divide the input data S in two disjoint subsets S1 and S2

q  Recur: solve the subproblems associated with S1 and S2

q  Conquer: combine the solutions for S1 and S2 into a solution for S

Ø  The base case for the recursion is a subproblem of size 0 or 1

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 17 -

Recursive Sorts

Ø Given list of objects to be sorted

Ø Split the list into two sublists.

Ø Recursively have two friends sort the two sublists.

Ø Combine the two sorted sublists into one entirely sorted list.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 18 -

Merge Sort

88 14
98 25

62

52

79

30
23

31

Divide and Conquer

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 19 -

Merge Sort

Ø Merge-sort is a sorting algorithm based on the divide-
and-conquer paradigm

Ø  It was invented by John von Neumann, one of the
pioneers of computing, in 1945

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 20 -

Merge Sort

88 14
98 25

62

52

79

30
23

31
Split Set into Two

 (no real work)

25,31,52,88,98

Get one friend to
sort the first half.

14,23,30,62,79

Get one friend to
sort the second half.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 21 -

Merge Sort

Merge two sorted lists into one

25,31,52,88,98

14,23,30,62,79

14,23,25,30,31,52,62,79,88,98

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 22 -

Merge-Sort
Ø Merge-sort on an input sequence S with n elements

consists of three steps:
q Divide: partition S into two sequences S1 and S2 of about n/2

elements each

q Recur: recursively sort S1 and S2

q Conquer: merge S1 and S2 into a unique sorted sequence

Algorithm mergeSort(S)
 Input sequence S with n elements
 Output sequence S sorted
if S.size() > 1

 (S1, S2) ç split(S, n/2)
 mergeSort(S1)
 mergeSort(S2)
 merge(S1, S2, S)

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 23 -

Merging Two Sorted Sequences

Ø  The conquer step of merge-sort consists of merging two sorted
sequences A and B into a sorted sequence S containing the union of
the elements of A and B

Ø  Merging two sorted sequences, each with n/2 elements takes O(n)
time

Ø  Straightforward to make the sort stable.

Ø  Normally, merging is not in-place: new memory must be allocated to
hold S.

Ø  It is possible to do in-place merging using linked lists.
q  Code is more complicated

q  Only changes memory usage by a constant factor

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 24 -

Merging Two Sorted Sequences (As Arrays)

Algorithm merge(S1, S2, S):

Input: Sorted sequences S1 and S2 and an empty sequence S, implemented as arrays

Output: Sorted sequence S containing the elements from S1 and S2

i ! j ! 0
while i <S1.size() and j <S2.size() do

if S1.get(i) "S2.get(j) then
S.addLast(S1.get(i))
i ! i +1

else
S.addLast(S2.get(j))
j ! j +1

while i <S1.size() do
S.addLast(S1.get(i))
i ! i +1

while j <S2.size() do
S.addLast(S2.get(j))
j ! j +1

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 25 -

Merging Two Sorted Sequences (As Linked Lists)

Algorithm merge(S1, S2, S):

Input: Sorted sequences S1 and S2 and an empty sequence S, implemented as linked lists

Output: Sorted sequence S containing the elements from S1 and S2

while S1 ! " and S2 ! " do
if S1.first().element() #S2.first().element() then

S.addLast(S1.remove(S1.first()))

else
S.addLast(S2.remove(S2.first()))

while S1 ! " do
S.addLast(S1.remove(S1.first()))

while S2 ! " do
S.addLast(S2.remove(S2.first()))

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 26 -

Merge-Sort Tree
Ø An execution of merge-sort is depicted by a binary tree

q each node represents a recursive call of merge-sort and stores
² unsorted sequence before the execution and its partition

² sorted sequence at the end of the execution

q  the root is the initial call
q  the leaves are calls on subsequences of size 0 or 1

7 2 | 9 4 è 2 4 7 9

7 | 2 è 2 7 9 | 4 è 4 9

7 è 7 2 è 2 9 è 9 4 è 4

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 27 -

Execution Example

Ø Partition

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 28 -

Execution Example (cont.)

Ø Recursive call, partition

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 29 -

Execution Example (cont.)

Ø Recursive call, partition

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 30 -

Execution Example (cont.)

Ø Recursive call, base case

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 31 -

Execution Example (cont.)

Ø Recursive call, base case

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 32 -

Execution Example (cont.)

Ø Merge

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 33 -

Execution Example (cont.)

Ø Recursive call, …, base case, merge

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 34 -

Execution Example (cont.)

Ø Merge

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 35 -

Execution Example (cont.)

Ø Recursive call, …, merge, merge

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 36 -

Execution Example (cont.)

Ø Merge

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 37 -

End of Lecture

March 11, 2012

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 38 -

Analysis of Merge-Sort
Ø  The height h of the merge-sort tree is O(log n)

q  at each recursive call we divide the sequence in half.

Ø  The overall amount or work done at the nodes of depth i is O(n)
q  we partition and merge 2i sequences of size n/2i

Ø  Thus, the total running time of merge-sort is O(n log n)!

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …

 T(n) = 2T(n / 2) +O(n)

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 39 -

Running Time of Comparison Sorts

Ø  Thus MergeSort is much more efficient than
SelectionSort, BubbleSort and InsertionSort. Why?

Ø You might think that to sort n keys, each key would have
to at some point be compared to every other key:

Ø However, this is not the case.
q Transitivity: If A < B and B < C, then you know that A < C, even

though you have never directly compared A and C.

q MergeSort takes advantage of this transitivity property in the
merge stage.

!O n2()

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 40 -

Heapsort

Ø  Invented by Williams & Floyd in 1964

Ø O(nlogn) worst case – like merge sort

Ø Sorts in place – like selection sort

Ø Combines the best of both algorithms

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 41 -

Selection Sort

Largest i values are sorted on the right.
Remaining values are off to the left.

6,7,8,9 <
3

4
1
5

2

Max is easier to find if the unsorted subarray is a heap.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 42 -

Heap-Sort Algorithm

Ø Build an array-based (max) heap

Ø  Iteratively call removeMax() to extract the keys in
descending order

Ø Store the keys as they are extracted in the unused tail
portion of the array

Ø  Thus HeapSort is in-place!

Ø But is it stable?
q No – heap operations may disorder ties

3

2 1

3

2 1

2

3

2 2

1

insert(2) upheap

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 43 -

Heapsort is Not Stable

Ø Example (MaxHeap)

3

2 1

3

2 1

2

3

2 2

1

insert(2) upheap

3

2
insert(2)

1st 2nd

3

2 2

1st 2nd

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 44 -

Heap-Sort Algorithm

Algorithm HeapSort(S)

Input: S, an unsorted array of comparable elements

Output: S, a sorted array of comparable elements

 T = MakeMaxHeap (S)

 for i = n-1 downto 0

 S[i] = T.removeMax()

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 45 -

Heap Sort Example
(Using Min Heap)

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 46 -

Heap-Sort Running Time

Ø  The heap can be built bottom-up in O(n) time

Ø Extraction of the ith element takes O(log(n - i+1)) time
(for downheaping)

Ø  Thus total run time is

T(n) = O(n) + log(n ! i +1)
i=1

n

"

= O(n) + log i
i=1

n

"

#O(n) + logn
i=1

n

"
= O(n logn)

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 47 -

Heap-Sort Running Time

Ø  It turns out that HeapSort is also Ω(nlogn). Why?

Ø  Thus HeapSort is θ(nlogn).

T(n) = O(n)+ log i
i=1

n

! , where

log i
i=1

n

! " n / 2()log n / 2()
= n / 2() logn #1()
= n / 4() logn + logn # 2()
" n / 4()logn $n " 4.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 48 -

Quick-Sort

88 14
98 25

62

52

79

30
23

31

Divide and Conquer

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 49 -

QuickSort

Ø  Invented by C.A.R. Hoare in 1960

Ø  “There are two ways of constructing a software design:
One way is to make it so simple that there are obviously
no deficiencies, and the other way is to make it so
complicated that there are no obvious deficiencies. The
first method is far more difficult.”

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 50 -

Quick-Sort

Ø Quick-sort is a divide-and-
conquer algorithm:
q Divide: pick a random

element x (called a pivot)
and partition S into
² L elements less than x

² E elements equal to x

² G elements greater than x

q Recur: Quick-sort L and G

q Conquer: join L, E and G

 x

 x

 L G E

 x

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 51 -

The Quick-Sort Algorithm

Algorithm QuickSort(S)

 if S.size() > 1

 (L, E, G) = Partition(S)

 QuickSort(L) //Small elements are sorted

 QuickSort(G) //Large elements are sorted

 S = (L, E, G) //Thus input is sorted

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 52 -

Partition
Ø Remove, in turn, each

element y from S and

Ø  Insert y into list L, E or G,
depending on the result of
the comparison with the
pivot x (e.g., last element in S)

Ø Each insertion and removal
is at the beginning or at the
end of a list, and hence
takes O(1) time

Ø  Thus, partitioning takes O
(n) time

Algorithm Partition(S)
 Input list S
 Output sublists L, E, G of the
 elements of S less than, equal to,
 or greater than the pivot, resp.
 L, E, G ç empty lists
x ç S.getLast().element
while S.isEmpty()

 y ç S.removeFirst(S)
 if y < x
 L.addLast(y)
 else if y = x
 E.addLast(y)
 else { y > x }
 G.addLast(y)

return L, E, G

¬

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 53 -

Partition
Ø Since elements are

removed at the beginning
and added at the end, this
partition algorithm is stable.

Algorithm Partition(S)
 Input sequence S
 Output subsequences L, E, G of the
 elements of S less than, equal to,
 or greater than the pivot, resp.
 L, E, G ç empty sequences
x ç S.getLast().element
while S.isEmpty()

 y ç S.removeFirst(S)
 if y < x
 L.addLast(y)
 else if y = x
 E.addLast(y)
 else { y > x }
 G.addLast(y)

return L, E, G

¬

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 54 -

Quick-Sort Tree
Ø An execution of quick-sort is depicted by a binary tree

q Each node represents a recursive call of quick-sort and stores
² Unsorted sequence before the execution and its pivot

² Sorted sequence at the end of the execution

q The root is the initial call

q The leaves are calls on subsequences of size 0 or 1

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 55 -

Execution Example

Ø Pivot selection

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 56 -

Execution Example (cont.)

Ø Partition, recursive call, pivot selection

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 57 -

Execution Example (cont.)

Ø Partition, recursive call, base case

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 58 -

Execution Example (cont.)

Ø Recursive call, …, base case, join

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 59 -

Execution Example (cont.)

Ø Recursive call, pivot selection

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 60 -

Execution Example (cont.)

Ø Partition, …, recursive call, base case

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 61 -

Execution Example (cont.)

Ø  Join, join

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 62 -

Quick-Sort Properties

Ø  The algorithm just described is stable, since elements
are removed from the beginning of the input sequence
and placed on the end of the output sequences (L,E, G).

Ø However it does not sort in place: O(n) new memory is
allocated for L, E and G

Ø  Is there an in-place quick-sort?

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 63 -

In-Place Quick-Sort
Ø Note: Use the lecture slides here instead of the textbook

implementation (Section 11.2.2)

88 14
98 25

62

52

79

30
23

31

Partition set into two using
randomly chosen pivot

14

25
30

23 31

88 98
62

79
≤ 52 <

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 64 -

In-Place Quick-Sort

14

25
30

23 31

88 98
62

79
≤ 52 <

14,23,25,30,31

Get one friend to
sort the first half.

62,79,98,88

Get one friend to
sort the second half.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 65 -

In-Place Quick-Sort

14,23,25,30,31

62,79,98,88
52

Glue pieces together.
 (No real work)

14,23,25,30,31,52,62,79,88,98

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 66 -

The In-Place Partitioning Problem

88 14
98 25

62

52

79

30
23

31

Input:

14

25
30

23 31

88 98
62

79
≤ 52 <

Output:
x=52

Problem: Partition a list into a set of small values and a set of large values.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 67 -

Precise Specification

 [...] is an arbitrary list of values. [] is the pivoPrecondit .i ton: A p r x A r=

p r

− ≤ = < + is rearranged such that [... 1] [] [1...]
for some
Postcondition

q.
: A A p q A q x A q r

p r q

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 68 -

Ø  3 subsets are maintained
q One containing values less

than or equal to the pivot

q One containing values
greater than the pivot

q One containing values yet
to be processed

Loop Invariant

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 69 -

Maintaining Loop Invariant

•  Consider element at location j

–  If greater than pivot, incorporate into
‘> set’ by incrementing j.

–  If less than or equal to pivot,
incorporate into ‘≤ set’ by swapping
with element at location i+1 and
incrementing both i and j.

–  Measure of progress: size of unprocessed set.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 70 -

Maintaining Loop Invariant

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 71 -

Establishing Loop Invariant

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 72 -

Establishing Postcondition

 on exitj=

Exhaustive on exit

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 73 -

Establishing Postcondition

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 74 -

An Example

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 75 -

In-Place Partitioning: Running Time

Each iteration takes O(1) time àTotal = O(n)

or

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 76 -

In-Place Partitioning is NOT Stable

or

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 77 -

The In-Place Quick-Sort Algorithm

Algorithm QuickSort(A, p, r)

 if p < r

 q = Partition(A, p, r)

 QuickSort(A, p, q - 1) //Small elements are sorted

 QuickSort(A, q + 1, r) //Large elements are sorted

 //Thus input is sorted

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 78 -

Running Time of Quick-Sort

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 79 -

Quick-Sort Running Time
Ø  We can analyze the running time of Quick-Sort using a recursion

tree.

Ø  At depth i of the tree, the problem is partitioned into 2i sub-problems.

Ø  The running time will be determined by how balanced these
partitions are.

depth

0

1

…

h

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 80 -

Quick Sort

88 14
98 25

62

52

79

30
23

31

Let pivot be the first
element in the list?

14

25
30

23

88 98
62

79
≤ 31 ≤

52

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 81 -

Quick Sort

≤ 14 <

14,23,25,30,31,52,62,79,88,98

23,25,30,31,52,62,79,88,98

If the list is already sorted,
then the list is worst case unbalanced.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 82 -

QuickSort: Choosing the Pivot

Ø Common choices are:
q random element

q middle element

q median of first, middle and last element

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 83 -

Best-Case Running Time

Ø  The best case for quick-sort occurs when each pivot partitions the
array in half.

Ø  Then there are O(log n) levels

Ø  There is O(n) work at each level

Ø  Thus total running time is O(n log n)

depth time

0 n

1 n

… …
i n

… …
log n n

 ! !

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 84 -

Quick Sort

Best Time:

Worst Time:

Expected Time:

T(n) = 2T(n/2) + Θ(n)
 = Θ(n log n)

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 85 -

Worst-case Running Time

Ø  The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

Ø  One of L and G has size n - 1 and the other has size 0

Ø  The running time is proportional to the sum

n + (n - 1) + … + 2 + 1

Ø  Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n - 1

… …

n - 1 1

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 86 -

Average-Case Running Time

Ø  If the pivot is selected randomly, the average-case running time
for Quick Sort is O(n log n).

Ø  Proving this requires a probabilistic analysis.

Ø  We will simply provide an intution for why average-case O(n log n)
is reasonable.

depth

0

1

…

h

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 87 -

Expected Time Complexity for Quick Sort

 Q: Why is it reasonable to expect O(n logn) time complexity?

 Because on average, the partition is not too unbalanA: ced.

− − ∈ + =

Example: Imagine a deterministic partition,
in which the 2 subsets are always in fixed proportion, i.e.,

(1) & (1), where , are constants, , [0...1], 1.p n q n p q p q p q

(1)p n − (1)q n −

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 88 -

Expected Time Complexity for Quick Sort

(1)p n − (1)q n −

 Then T (n) =T (p(n ! 1)) +T (q(n ! 1)) +O(n)

wlog, suppose that q > p.
Let k be the depth of the recursion tree
Then qkn = 1 ! k = logn / log(1 / q)
Thus k "O(logn) :

 O(n) work done per level !T (n) = O(nlogn).

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 89 -

Properties of QuickSort

Ø  In-place?

Ø Stable?

Ø  Fast?
q Depends.

q Worst Case:

q Expected Case:

ü
ü

2()nΘ
(log), with small constantsn nΘ

But not both!

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 90 -

Summary of Comparison Sorts

Algorithm Best
Case

Worst
Case

Average
Case

In
Place

Stable Comments

Selection n2

n2

Yes Yes

Bubble n

n2

Yes Yes Must count swaps for linear best
case running time.

Insertion n n2

Yes Yes Good if often almost sorted

Merge n log n n log n No Yes Good for very large datasets that
require swapping to disk

Heap n log n n log n Yes No Best if guaranteed n log n required

Quick n log n n2 n log n Yes Yes Usually fastest in practice

But not both!

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 91 -

Comparison Sort: Lower Bound

 MergeSort and HeapSort are both !(n logn) (worst case).

Can we do better?

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 92 -

Comparison Sort: Decision Trees

Ø Example: Sorting a 3-element array A[1..3]

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 93 -

Comparison Sort: Decision Trees
Ø  For a 3-element array, there are 6 external nodes.

Ø  For an n-element array, there are external nodes. n!

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 94 -

Comparison Sort

Ø  To store n! external nodes, a decision tree must have a
height of at least

Ø Worst-case time is equal to the height of the binary
decision tree.

Thus T(n)!" logn!()
where logn! = log i

i=1

n

$ log n / 2%& '(
i=1

n / 2%& '(

!"(n logn)

Thus T(n)!"(n logn)

Thus MergeSort & HeapSort are asymptotically optimal.

logn!!" #$

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 95 -

Linear Sorts?

Comparison sorts are very general, but are (log)n nΩ

 Faster sorting may be possible if we can constrain the nature of the input.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 96 -

Example 1. Counting Sort

Ø  Invented by Harold Seward in 1954.

Ø Counting Sort applies when the elements to be sorted
come from a finite (and preferably small) set.

Ø  For example, the elements to be sorted are integers in
the range [0…k-1], for some fixed integer k.

Ø We can then create an array V[0…k-1] and use it to
count the number of elements with each value [0…k-1].

Ø  Then each input element can be placed in exactly the
right place in the output array in constant time.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 97 -

Counting Sort

Ø  Input: N records with integer keys between [0…3].

Ø Output: Stable sorted keys.

Ø Algorithm:
q Count frequency of each key value to determine transition

locations

q Go through the records in order putting them where they go.

Input:
Output: 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 3 3 3

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 98 -

CountingSort

Stable sort: If two keys are the same, their order does not change.

Input:
Output:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

Thus the 4th record in input with digit 1 must be
the 4th record in output with digit 1.

It belongs at output index 8, because 8 records go before it

ie, 5 records with a smaller digit & 3 records with the same digit

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3

Count These!

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 99 -

CountingSort

Input:
Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:
of records with digit v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
2 3 9 5

N records. Time to count? θ(N)

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 100 -

CountingSort

Input:
Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:
of records with digit v:

of records with digit < v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
3 3 9 5
17 14 5 0

N records, k different values. Time to count? θ(k)

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 101 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:
of records with digit < v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 5 0

= location of first record with digit v.

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 102 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 5 0 Location of first record

with digit v.

Algorithm: Go through the records in order
 putting them where they go.

1 0 ?

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 103 -

Loop Invariant

Ø  The first i-1 keys have been placed in the correct
locations in the output array

Ø  The auxiliary data structure v indicates the location at
which to place the ith key for each possible key value
from [0..k-1].

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 104 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 5 0 Location of next record

with digit v.

1

Algorithm: Go through the records in order
 putting them where they go.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 105 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 6 0 Location of next record

with digit v.

0

Algorithm: Go through the records in order
 putting them where they go.

1

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 106 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 6 1 Location of next record

with digit v.

0 0

Algorithm: Go through the records in order
 putting them where they go.

1

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 107 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 6 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 108 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 7 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 3

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 109 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
18 14 7 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 1 3

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 110 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
18 14 8 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 1 3 1

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 111 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
18 14 9 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 3 3 1 1

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 112 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 14 9 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 1 3 1 1 3

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 113 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 14 10 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 0 1 1 1 3 3

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 114 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 14 10 3 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 2 1 1 1 3 3 0

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 115 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 15 10 3 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 1 1 1 1 3 3 0 2

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 116 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 15 10 3 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 1 1 1 1 3 3 0 2

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 117 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 17 14 5 Location of next record

with digit v.

0 1 1 0 1 1 1 1 3 3 0 2 0 0 1 1 1 2 2

θ(N) Time =
θ(N+k) Total =

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 118 -

Input:
•  An array of N numbers.
•  Each number contains d digits.
•  Each digit between [0…k-1]

Output:
•  Sorted numbers.

Example 2. RadixSort 344
125
333
134
224
334
143
225
325
243

Digit Sort:
•  Select one digit
•  Separate numbers into k piles
 based on selected digit (e.g., Counting Sort).

125
224
225
325

333
134
334

344
143
243

Stable sort: If two cards are the same for that digit,
their order does not change.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 119 -

RadixSort

344
125
333
134
224
334
143
225
325
243

Sort wrt which
digit first?

The most
significant.

125
134
143
224
225
243
344
333
334
325

Sort wrt which
digit Second?

The next most
significant.

125
224
225
325
134
333
334
143
243
344

All meaning in first sort lost.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 120 -

RadixSort

344
125
333
134
224
334
143
225
325
243

Sort wrt which
digit first?

Sort wrt which
digit Second?

The least
significant.

333
143
243
344
134
224
334
125
225
325

The next least
significant.

224
125
225
325
333
134
334
143
243
344

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 121 -

RadixSort

344
125
333
134
224
334
143
225
325
243

Sort wrt which
digit first?

Sort wrt which
digit Second?

The least
significant.

333
143
243
344
134
224
334
125
225
325

The next least
significant.

2 24
1 25
2 25
3 25
3 33
1 34
3 34
1 43
2 43
3 44

 Is sorted wrt least sig. 2 digits.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 122 -

Sort wrt i+1st
digit.

2 24
1 25
2 25
3 25
3 33
1 34
3 34
1 43
2 43
3 44

Is sorted wrt
first i digits.

1 25
1 34
1 43

2 24
2 25
2 43

3 25
3 33
3 34
3 44

Is sorted wrt
first i+1 digits.

i+1

These are in the
correct order
because sorted
wrt high order digit

RadixSort

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 123 -

Sort wrt i+1st
digit.

2 24
1 25
2 25
3 25
3 33
1 34
3 34
1 43
2 43
3 44

Is sorted wrt
first i digits.

1 25
1 34
1 43

2 24
2 25
2 43

3 25
3 33
3 34
3 44

i+1

These are in the
correct order
because was sorted &
stable sort left sorted

Is sorted wrt
first i+1 digits.

RadixSort

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 124 -

Loop Invariant

Ø  The keys have been correctly stable-sorted with respect
to the i-1 least-significant digits.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 125 -

Running Time

Running time is (())
Where

of digits in each number
 # of elements to be sorted
of possible values for each digit

d n k

d
n
k

Θ +

=
=
=

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 126 -

Example 3. Bucket Sort

Ø Applicable if input is constrained to finite interval, e.g.,
real numbers in the range [0…1).

Ø  If input is random and uniformly distributed, expected
run time is Θ(n).

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 127 -

Bucket Sort

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 128 -

Loop Invariants

Ø  Loop 1
q The first i-1 keys have been correctly placed into buckets of

width 1/n.

Ø  Loop 2
q The keys within each of the first i-1 buckets have been correctly

stable-sorted.

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 129 -

PseudoCode

(1)Θ

(1)Θ
()nΘ

n×

()nΘ

Expected Running Time

n×

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 130 -

Sorting Algorithms
Ø Comparison Sorting

q Selection Sort

q Bubble Sort

q  Insertion Sort

q Merge Sort

q Heap Sort

q Quick Sort

Ø  Linear Sorting
q Counting Sort

q Radix Sort

q Bucket Sort

Last Updated: 12-03-13 11:11 AM
CSE 2011
Prof. J. Elder - 131 -

Sorting: Learning Outcomes
Ø You should be able to:

q Explain the difference between comparison sorts and linear
sorting methods

q  Identify situations when linear sorting methods can be applied
and know why

q Select a sorting method that is well-suited for a specific
application.

q Explain what is meant by sorting in place and stable sorting

q State a tight bound on the problem of comparison sorting, and
explain why no algorithm can do better.

q Explain and/or code any of the sorting algorithms we have
covered, and state their asymptotic run times.

