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Chapter 11 
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Sorting 

Ø We have seen the advantage of sorted data 
representations for a number of applications 
q Sparse vectors 

q Maps 

q Dictionaries 

Ø Here we consider the problem of how to efficiently 
transform an unsorted representation into a sorted 
representation. 

Ø We will focus on sorted array representations. 
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Sorting Algorithms 
Ø Comparison Sorting 

q Selection Sort 

q Bubble Sort 

q  Insertion Sort 

q Merge Sort 

q Heap Sort 

q Quick Sort 

Ø  Linear Sorting 
q Counting Sort 

q Radix Sort 

q Bucket Sort 
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Comparison Sorts 

Ø Comparison Sort algorithms sort the input by successive 
comparison of pairs of input elements. 

Ø Comparison Sort algorithms are very general:  they 
make no assumptions about the values of the input 
elements. 

4 3 7 11 2 2 1 3 5 

  e.g.,3 !11?
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Sorting Algorithms and Memory 

Ø Some algorithms sort by swapping elements within the 
input array 

Ø Such algorithms are said to sort in place, and require 
only O(1) additional memory. 

Ø Other algorithms require allocation of an output array into 
which values are copied. 

Ø  These algorithms do not sort in place, and require O(n) 
additional memory. 

4 3 7 11 2 2 1 3 5 

swap 



Last Updated:  12-03-13 11:11 AM 
CSE 2011 
Prof. J. Elder - 6 - 

Stable Sort 

Ø A sorting algorithm is said to be stable if the ordering of 
identical keys in the input is preserved in the output. 

Ø  The stable sort property is important, for example, when 
entries with identical keys are already ordered by 
another criterion. 

Ø  (Remember that stored with each key is a record 
containing some useful information.) 

4 3 7 11 2 2 1 3 5 

1 2 2 3 3 4 5 7 11 
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Selection Sort 

Ø Selection Sort operates by first finding the smallest 
element in the input list, and moving it to the output list. 

Ø  It then finds the next smallest value and does the same. 

Ø  It continues in this way until all the input elements have 
been selected and placed in the output list in the correct 
order. 

Ø Note that every selection requires a search through the 
input list. 

Ø  Thus the algorithm has a nested loop structure 

Ø Selection Sort Example 
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Selection Sort 
for i = 0 to n-1 

 A[0…i-1] contains the i smallest keys in sorted order.   
 A[i…n-1] contains the remaining keys 

 jmin = i 

 for j = i+1 to n-1 

  if A[ j ] < A[jmin] 

   jmin = j 

 swap A[i] with A[jmin] 

 

  O(n ! i !1)

  
T(n) = n ! i !1( )

i=0

n!1

" = i
i=0

n!1

"   = O(n2)

Running time? 

LI: 
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Bubble Sort 

Ø Bubble Sort operates by successively comparing 
adjacent elements, swapping them if they are out of 
order. 

Ø At the end of the first pass, the largest element is in the 
correct position. 

Ø A total of n passes are required to sort the entire array. 

Ø  Thus bubble sort also has a nested loop structure 

Ø Bubble Sort Example 
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Expert Opinion on Bubble Sort 
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Bubble Sort 

for i = n-1 downto 1 

 A[i+1…n-1] contains the n-i-1 largest keys in sorted order.   
 A[0…i] contains the remaining keys 

 for j = 0 to i-1 

  if A[ j ] > A[ j + 1 ] 

   swap A[ j ] and A[ j + 1 ] 

 

  O(i)

  
T(n) = i

i=1

n!1

"   = O(n2)

Running time? 

LI: 
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Comparison   

Ø  Thus both Selection Sort and Bubble Sort have O(n2) 
running time. 

Ø However, both can also easily be designed to  
q Sort in place 

q Stable sort 
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Insertion Sort 

Ø  Like Selection Sort, Insertion Sort maintains two sublists: 
q  A left sublist containing sorted keys 

q  A right sublist containing the remaining unsorted keys 

Ø  Unlike Selection Sort, the keys in the left sublist are not the smallest 
keys in the input list, but the first keys in the input list. 

Ø  On each iteration, the next key in the right sublist is considered, and 
inserted at the correct location in the left sublist. 

Ø  This continues until the right sublist is empty. 

Ø  Note that for each insertion, some elements in the left sublist will in 
general need to be shifted right. 

Ø  Thus the algorithm has a nested loop structure 

Ø  Insertion Sort Example 



Last Updated:  12-03-13 11:11 AM 
CSE 2011 
Prof. J. Elder - 14 - 

Insertion Sort 
for i = 1 to n-1 

 A[0…i-1] contains the first i keys of the input in sorted order.   
 A[i…n-1] contains the remaining keys 

  key = A[i] 

  j = i 

 while j > 0 & A[j-1] > key 

  A[j] ß A[j-1] 

  j = j-1 

 A[j] = key 

  O(i)

  
T(n) = i

i=1

n!1

"   = O(n2)

Running time? 

LI: 
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Comparison   

Ø Selection Sort  

Ø Bubble Sort  

Ø  Insertion Sort 
q Sort in place 

q Stable sort 

q But O(n2) running time. 

Ø Can we do better? 
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Divide-and-Conquer  

Ø  Divide-and conquer is a general algorithm design paradigm: 
q  Divide: divide the input data S in two disjoint subsets S1 and S2 

q  Recur: solve the subproblems associated with S1 and S2 

q  Conquer: combine the solutions for S1 and S2 into a solution for S 

Ø  The base case for the recursion is a subproblem of size 0 or 1 
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Recursive Sorts 

Ø Given list of objects to be sorted  

Ø Split the list into two sublists.  

 

Ø Recursively have two friends sort the two sublists.  

Ø Combine the two sorted sublists into one entirely sorted list.  
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Merge Sort 

88 14 
98 25 

62 

52 

79 

30 
23 

31 

Divide and Conquer  
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Merge Sort 

Ø Merge-sort is a sorting algorithm based on the divide-
and-conquer paradigm  

Ø  It was invented by John von Neumann, one of the 
pioneers of computing, in 1945 
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Merge Sort 

88 14 
98 25 

62 

52 

79 

30 
23 

31 
Split Set into Two 

 (no real work) 

25,31,52,88,98 

Get one friend to  
sort the first half.  

14,23,30,62,79 

Get one friend to  
sort the second half.  
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Merge Sort 

Merge two sorted lists into one  

25,31,52,88,98 

14,23,30,62,79 

14,23,25,30,31,52,62,79,88,98 
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Merge-Sort 
Ø Merge-sort on an input sequence S with n elements 

consists of three steps: 
q Divide: partition S into two sequences S1 and S2 of about n/2 

elements each 

q Recur: recursively sort S1 and S2 

q Conquer: merge S1 and S2 into a unique sorted sequence 

Algorithm mergeSort(S) 
 Input sequence S with n elements 
 Output sequence S sorted  
if S.size() > 1 

 (S1, S2) ç split(S, n/2)  
 mergeSort(S1) 
 mergeSort(S2) 
 merge(S1, S2, S) 
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Merging Two Sorted Sequences 

Ø  The conquer step of merge-sort consists of merging two sorted 
sequences A and B into a sorted sequence S containing the union of 
the elements of A and B 

Ø  Merging two sorted sequences, each with n/2 elements takes O(n) 
time 

Ø  Straightforward to make the sort stable. 

Ø  Normally, merging is not in-place:  new memory must be allocated to 
hold S. 

Ø  It is possible to do in-place merging using linked lists. 
q  Code is more complicated 

q  Only changes memory usage by a constant factor 
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Merging Two Sorted Sequences (As Arrays) 

   

Algorithm merge(S1, S2, S):

Input: Sorted sequences S1 and S2  and an empty sequence S, implemented as arrays

Output:  Sorted sequence S containing the elements from S1 and S2

i ! j ! 0
while i <S1.size() and j <S2.size() do

if  S1.get(i) "S2.get(j) then
S.addLast(S1.get(i))
i ! i +1

else
S.addLast(S2.get(j))
j ! j +1

while i <S1.size() do
S.addLast(S1.get(i))
i ! i +1

while j <S2.size() do
S.addLast(S2.get(j))
j ! j +1
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Merging Two Sorted Sequences (As Linked Lists) 

   

Algorithm merge(S1, S2, S):

Input: Sorted sequences S1 and S2  and an empty sequence S, implemented as linked lists

Output:  Sorted sequence S containing the elements from S1 and S2

while S1 ! " and S2 ! " do
if  S1.first().element() #S2.first().element() then

S.addLast(S1.remove(S1.first()))

else
S.addLast(S2.remove(S2.first()))

while S1 ! " do
S.addLast(S1.remove(S1.first()))

while S2 ! " do
S.addLast(S2.remove(S2.first()))
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Merge-Sort Tree 
Ø An execution of merge-sort is depicted by a binary tree 

q each node represents a recursive call of merge-sort and stores 
² unsorted sequence before the execution and its partition 

² sorted sequence at the end of the execution 

q  the root is the initial call  
q  the leaves are calls on subsequences of size 0 or 1 

7  2 | 9  4  è  2  4  7  9 

7 | 2  è  2  7 9 | 4  è 4  9 

7 è 7 2 è 2 9 è 9 4 è 4 
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Execution Example 

Ø Partition 
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Execution Example (cont.) 

Ø Recursive call, partition 
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Execution Example (cont.) 

Ø Recursive call, partition 
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Execution Example (cont.) 

Ø Recursive call, base case 
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Execution Example (cont.) 

Ø Recursive call, base case 
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Execution Example (cont.) 

Ø Merge 
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Execution Example (cont.) 

Ø Recursive call, …, base case, merge 
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Execution Example (cont.) 

Ø Merge 



Last Updated:  12-03-13 11:11 AM 
CSE 2011 
Prof. J. Elder - 35 - 

Execution Example (cont.) 

Ø Recursive call, …, merge, merge 



Last Updated:  12-03-13 11:11 AM 
CSE 2011 
Prof. J. Elder - 36 - 

Execution Example (cont.) 

Ø Merge 
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End of Lecture 

March 11, 2012 
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Analysis of Merge-Sort 
Ø  The height h of the merge-sort tree is O(log n)  

q  at each recursive call we divide the sequence in half.  

Ø  The overall amount or work done at the nodes of depth i is O(n)  
q  we partition and merge 2i sequences of size n/2i  

Ø  Thus, the total running time of merge-sort is O(n log n)! 

depth #seqs size 

0 1 n 

1 2 n/2 

i 2i n/2i 

… … … 

  T(n) = 2T(n / 2) +O(n)
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Running Time of Comparison Sorts 

Ø  Thus MergeSort is much more efficient than 
SelectionSort, BubbleSort and InsertionSort.  Why? 

Ø You might think that to sort n keys, each key would have 
to at some point be compared to every other key: 

Ø However, this is not the case. 
q Transitivity:  If A < B and B < C, then you know that A < C, even 

though you have never directly compared A and C. 

q MergeSort takes advantage of this transitivity property in the 
merge stage. 

  
!O n2( )
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Heapsort 

Ø  Invented by Williams & Floyd in 1964 

Ø O(nlogn) worst case – like merge sort 

Ø Sorts in place – like selection sort 

Ø Combines the best of both algorithms 
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Selection Sort 

Largest i values are sorted on the right. 
Remaining values are off to the left. 

6,7,8,9 < 
3 

4 
1 
5 

2 

Max is easier to find if the unsorted subarray is a heap. 
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Heap-Sort Algorithm 

Ø Build an array-based (max) heap 

Ø  Iteratively call removeMax() to extract the keys in 
descending order 

Ø Store the keys as they are extracted in the unused tail 
portion of the array 

Ø  Thus HeapSort is in-place! 

Ø But is it stable? 
q No – heap operations may disorder ties 

3 

2 1 

3 

2 1 

2 

3 

2 2 

1 

insert(2) upheap 
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Heapsort is Not Stable 

Ø Example (MaxHeap) 

3 

2 1 

3 

2 1 

2 

3 

2 2 

1 

insert(2) upheap 

3 

2 
insert(2) 

1st 2nd 

3 

2 2 

1st 2nd 
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Heap-Sort Algorithm 

Algorithm HeapSort(S) 

Input:  S, an unsorted array of comparable elements 

Output:  S, a sorted array of comparable elements   

 T = MakeMaxHeap (S) 

 for i = n-1 downto 0 

  S[i] = T.removeMax() 
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Heap Sort Example 
(Using Min Heap) 
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Heap-Sort Running Time 

Ø  The heap can be built bottom-up in O(n) time 

Ø Extraction of the ith element takes O(log(n - i+1)) time 
(for downheaping) 

Ø  Thus total run time is  

  

T(n) = O(n) + log(n ! i +1)
i=1

n

"

= O(n) + log i
i=1

n

"

#O(n) + logn
i=1

n

"
= O(n logn)
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Heap-Sort Running Time 

Ø  It turns out that HeapSort is also Ω(nlogn).  Why? 

Ø  Thus HeapSort is θ(nlogn). 

  

T(n) = O(n)+ log i
i=1

n

! , where

log i
i=1

n

! " n / 2( )log n / 2( )
= n / 2( ) logn #1( )
= n / 4( ) logn + logn # 2( )
" n / 4( )logn $n " 4.
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Quick-Sort 

88 14 
98 25 

62 

52 

79 

30 
23 

31 

Divide and Conquer  
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QuickSort 

Ø  Invented by C.A.R. Hoare in 1960 

Ø  “There are two ways of constructing a software design: 
One way is to make it so simple that there are obviously 
no deficiencies, and the other way is to make it so 
complicated that there are no obvious deficiencies. The 
first method is far more difficult.” 
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Quick-Sort  

Ø Quick-sort is a divide-and-
conquer algorithm: 
q Divide: pick a random 

element x (called a pivot) 
and partition S into  
² L elements less than x 

² E elements equal to x 

² G elements greater than x 

q Recur: Quick-sort L and G 

q Conquer: join L, E and G 

 x 

 x 

        L        G    E 

 x 
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The Quick-Sort Algorithm 

Algorithm QuickSort(S) 

 if S.size() > 1 

  (L, E, G) = Partition(S) 

  QuickSort(L) //Small elements are sorted 

  QuickSort(G) //Large elements are sorted 

  S = (L, E, G) //Thus input is sorted 
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Partition 
Ø Remove, in turn, each 

element y from S and  

Ø  Insert y into list L, E or G, 
depending on the result of 
the comparison with the 
pivot x (e.g., last element in S) 

Ø Each insertion and removal 
is at the beginning or at the 
end of a list, and hence 
takes O(1) time 

Ø  Thus, partitioning takes O
(n) time 

Algorithm Partition(S) 
 Input list S 
 Output sublists L, E, G of the  
  elements of S less than, equal to, 
  or greater than the pivot, resp. 
 L, E, G ç empty lists 
x ç S.getLast().element 
while     S.isEmpty() 

 y ç  S.removeFirst(S) 
 if y < x 
  L.addLast(y) 
 else if y = x 
   E.addLast(y) 
 else { y > x } 
  G.addLast(y) 

return L, E, G 

¬
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Partition 
Ø Since elements are 

removed at the beginning 
and added at the end, this 
partition algorithm is stable. 

Algorithm Partition(S) 
 Input sequence S 
 Output subsequences L, E, G of the  
  elements of S less than, equal to, 
  or greater than the pivot, resp. 
 L, E, G ç empty sequences 
x ç S.getLast().element 
while     S.isEmpty() 

 y ç  S.removeFirst(S) 
 if y < x 
  L.addLast(y) 
 else if y = x 
   E.addLast(y) 
 else { y > x } 
  G.addLast(y) 

return L, E, G 

¬
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Quick-Sort Tree 
Ø An execution of quick-sort is depicted by a binary tree 

q Each node represents a recursive call of quick-sort and stores 
² Unsorted sequence before the execution and its pivot 

² Sorted sequence at the end of the execution 

q The root is the initial call  

q The leaves are calls on subsequences of size 0 or 1 
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Execution Example 

Ø Pivot selection 
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Execution Example (cont.) 

Ø Partition, recursive call, pivot selection 



Last Updated:  12-03-13 11:11 AM 
CSE 2011 
Prof. J. Elder - 57 - 

Execution Example (cont.) 

Ø Partition, recursive call, base case 
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Execution Example (cont.) 

Ø Recursive call, …, base case, join 
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Execution Example (cont.) 

Ø Recursive call, pivot selection 
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Execution Example (cont.) 

Ø Partition, …, recursive call, base case 
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Execution Example (cont.) 

Ø  Join, join 
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Quick-Sort Properties 

Ø  The algorithm just described is stable, since elements 
are removed from the beginning of the input sequence 
and placed on the end of the output sequences (L,E, G). 

Ø However it does not sort in place:  O(n) new memory is 
allocated for L, E and G 

Ø  Is there an in-place quick-sort? 
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In-Place Quick-Sort 
Ø Note:  Use the lecture slides here instead of the textbook 

implementation (Section 11.2.2) 

88 14 
98 25 

62 

52 

79 

30 
23 

31 

Partition set into two using  
randomly chosen pivot 

14 

25 
30 

23 31 

88 98 
62 

79 
≤ 52 < 
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In-Place Quick-Sort 

14 

25 
30 

23 31 

88 98 
62 

79 
≤ 52 < 

14,23,25,30,31 

Get one friend to  
sort the first half.  

62,79,98,88 

Get one friend to  
sort the second half.  
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In-Place Quick-Sort 

14,23,25,30,31 

62,79,98,88 
52 

Glue pieces together. 
  (No real work) 

14,23,25,30,31,52,62,79,88,98 
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The In-Place Partitioning Problem 

88 14 
98 25 

62 

52 

79 

30 
23 

31 

Input: 

14 

25 
30 

23 31 

88 98 
62 

79 
≤ 52 < 

Output: 
x=52 

Problem:  Partition a list into a set of small values and a set of large values. 
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Precise Specification 

 [ ... ] is an arbitrary list of values.  [ ] is the pivoPrecondit .i ton: A p r x A r=

p r 

− ≤ = < + is rearranged such that [ ... 1] [ ] [ 1... ]
for some 
Postcondition

q.
: A A p q A q x A q r

p r q 
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Ø  3 subsets are maintained 
q One containing values less 

than or equal to the pivot 

q One containing values 
greater than the pivot 

q One containing values yet 
to be processed 

Loop Invariant 
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Maintaining Loop Invariant 

•  Consider element at location j 

–  If greater than pivot, incorporate into 
‘> set’ by  incrementing j. 

–  If less than or equal to pivot, 
incorporate into ‘≤ set’ by swapping 
with element at location i+1 and 
incrementing both i and j. 

–  Measure of progress:  size of unprocessed set. 
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Maintaining Loop Invariant 
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Establishing Loop Invariant 
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Establishing Postcondition 

 on exitj=

Exhaustive on exit 
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Establishing Postcondition 
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An Example 
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In-Place Partitioning:  Running Time  

Each iteration takes O(1) time àTotal = O(n)  

or 
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In-Place Partitioning is NOT Stable 

or 
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The In-Place Quick-Sort Algorithm 

Algorithm QuickSort(A, p, r) 

 if p < r 

  q = Partition(A, p, r) 

  QuickSort(A, p, q - 1) //Small elements are sorted 

  QuickSort(A, q + 1, r) //Large elements are sorted 

  //Thus input is sorted 
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Running Time of Quick-Sort 
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Quick-Sort Running Time 
Ø  We can analyze the running time of Quick-Sort using a recursion 

tree. 

Ø  At depth i of the tree, the problem is partitioned into 2i sub-problems. 

Ø  The running time will be determined by how balanced these 
partitions are. 

depth 

0 

1 

… 

h 
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Quick Sort 

88 14 
98 25 

62 

52 

79 

30 
23 

31 

Let pivot be the first  
element in the list? 

14 

25 
30 

23 

88 98 
62 

79 
≤ 31 ≤ 

52 



Last Updated:  12-03-13 11:11 AM 
CSE 2011 
Prof. J. Elder - 81 - 

Quick Sort 

≤ 14 < 

14,23,25,30,31,52,62,79,88,98 

23,25,30,31,52,62,79,88,98 

If the list is already sorted,  
then the list is worst case unbalanced. 
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QuickSort:  Choosing the Pivot 

Ø Common choices are: 
q random element 

q middle element 

q median of first, middle and last element 
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Best-Case Running Time 

Ø  The best case for quick-sort occurs when each pivot partitions the 
array in half. 

Ø  Then there are O(log n) levels 

Ø  There is O(n) work at each level 

Ø  Thus total running time is O(n log n) 

depth time 

0 n 

1 n 

… … 
i n 

… … 
log n n 

 !  !
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Quick Sort 

Best Time: 

Worst Time: 

Expected Time: 

T(n) = 2T(n/2) + Θ(n) 
        = Θ(n log n) 
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Worst-case Running Time 

Ø  The worst case for quick-sort occurs when the pivot is the unique 
minimum or maximum element 

Ø  One of L and G has size n - 1 and the other has size 0 

Ø  The running time is proportional to the sum 

n + (n - 1) + … + 2 + 1 

Ø  Thus, the worst-case running time of quick-sort is O(n2) 

depth time 

0 n 

1 n - 1 

… … 

n - 1 1 
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Average-Case Running Time 

Ø  If the pivot is selected randomly, the average-case running time 
for Quick Sort is O(n log n). 

Ø  Proving this requires a probabilistic analysis. 

Ø  We will simply provide an intution for why average-case O(n log n) 
is reasonable. 

depth 

0 

1 

… 

h 
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Expected Time Complexity for Quick Sort 

  Q: Why is it reasonable to expect O(n logn) time complexity?

 Because on average, the partition is not too unbalanA: ced.

− − ∈ + =

Example: Imagine a deterministic partition, 
in which the 2 subsets are always in fixed proportion, i.e.,

( 1) & ( 1), where ,  are constants, , [0...1], 1.p n q n p q p q p q

( 1)p n − ( 1)q n −



Last Updated:  12-03-13 11:11 AM 
CSE 2011 
Prof. J. Elder - 88 - 

Expected Time Complexity for Quick Sort 

( 1)p n − ( 1)q n −

  Then T (n) =T (p(n ! 1)) +T (q(n ! 1)) +O(n)

  

wlog, suppose that q > p.
Let k be the depth of the recursion tree 
Then qkn = 1 ! k = logn / log(1 / q)
Thus k "O(logn) :

  O(n) work done per level !T (n) = O(nlogn).
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Properties of QuickSort 

Ø  In-place? 

Ø Stable? 

Ø  Fast? 
q Depends. 

q Worst Case: 

q Expected Case: 

ü 
ü 

2( )nΘ
( log ), with small constantsn nΘ

But not both! 
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Summary of Comparison Sorts 

Algorithm Best 
Case 

Worst 
Case 

Average 
Case 

In 
Place 

Stable Comments 

Selection n2 
 

n2 
 

Yes Yes 

Bubble n 
 

n2 
 

Yes Yes Must count swaps for linear best 
case running time. 

Insertion n n2 
 

Yes Yes Good if often almost sorted 

Merge n log n n log n No Yes Good for very large datasets that 
require swapping to disk 

Heap n log n n log n Yes No Best if guaranteed n log n required 

Quick n log n n2 n log n Yes Yes Usually fastest in practice 

But not both! 
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Comparison Sort:  Lower Bound 

  MergeSort and HeapSort are both !(n logn) (worst case).

Can we do better? 
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Comparison Sort:  Decision Trees 

Ø Example:  Sorting a 3-element array A[1..3] 
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Comparison Sort:  Decision Trees 
Ø  For a 3-element array, there are 6 external nodes. 

Ø  For an n-element array, there are     external nodes.   n!
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Comparison Sort 

Ø  To store n! external nodes, a decision tree must have a 
height of at least    

Ø Worst-case time is equal to the height of the binary 
decision tree. 

  

Thus T(n)!" logn!( )
where logn! = log i

i=1

n

# $ log n / 2%& '(
i=1

n / 2%& '(

# !"(n logn)

Thus T(n)!"(n logn)

Thus MergeSort & HeapSort are asymptotically optimal. 

  
logn!!" #$
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Linear Sorts? 

Comparison sorts are very general, but are ( log )n nΩ

 Faster sorting may be possible if we can constrain the nature of the input.
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Example 1.  Counting Sort 

Ø  Invented by Harold Seward in 1954. 

Ø Counting Sort applies when the elements to be sorted 
come from a finite (and preferably small) set. 

Ø  For example, the elements to be sorted are integers in 
the range [0…k-1], for some fixed integer k. 

Ø We can then create an array V[0…k-1] and use it to 
count the number of elements with each value [0…k-1]. 

Ø  Then each input element can be placed in exactly the 
right place in the output array in constant time. 
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Counting Sort 

Ø  Input: N records with integer keys between [0…3]. 

Ø Output: Stable sorted keys. 

Ø Algorithm:  
q Count frequency of each key value to determine transition 

locations 

q Go through the records in order putting them where they go. 

Input: 
Output: 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 3 3 3 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 



Last Updated:  12-03-13 11:11 AM 
CSE 2011 
Prof. J. Elder - 98 - 

CountingSort 

Stable sort: If two keys are the same, their order does not change.  

Input: 
Output: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

Thus  the 4th record in input with digit 1 must be  
the 4th record in output with digit 1. 

It belongs at output index 8, because 8 records go before it  

ie, 5 records with a smaller digit & 3 records with the same digit 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3 

Count These! 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 
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CountingSort 

Input: 
Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 
# of records with digit v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
2 3 9 5 

N records. Time to count? θ(N) 
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CountingSort 

Input: 
Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 
# of records with digit v: 

# of records with digit < v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
3 3 9 5 
17 14 5 0 

N records, k different values. Time to count? θ(k) 



Last Updated:  12-03-13 11:11 AM 
CSE 2011 
Prof. J. Elder - 101 - 

CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 
# of records with digit < v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 5 0 

= location of first record with digit v. 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 5 0 Location of first record  

with digit v. 

Algorithm: Go through the records in order 
                   putting them where they go. 

1 0 ? 
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Loop Invariant 

Ø  The first i-1 keys have been placed in the correct 
locations in the output array 

Ø  The auxiliary data structure v indicates the location at 
which to place the ith key for each possible key value 
from [0..k-1]. 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 5 0 Location of next record  

with digit v. 

1 

Algorithm: Go through the records in order 
                   putting them where they go. 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 6 0 Location of next record  

with digit v. 

0 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 6 1 Location of next record  

with digit v. 

0 0 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 6 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 7 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 3 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
18 14 7 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 1 3 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
18 14 8 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 1 3 1 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
18 14 9 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 3 3 1 1 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 14 9 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 1 3 1 1 3 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 14 10 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 0 1 1 1 3 3 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 14 10 3 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 2 1 1 1 3 3 0 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 15 10 3 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 1 1 1 1 3 3 0 2 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 15 10 3 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 1 1 1 1 3 3 0 2 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 17 14 5 Location of next record  

with digit v. 

0 1 1  0 1 1 1 1 3 3 0 2 0 0 1 1 1 2 2 

θ(N) Time =  
θ(N+k) Total =  
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Input:  
•  An array of N numbers. 
•  Each number contains d digits. 
•  Each digit between [0…k-1] 

Output:  
•  Sorted numbers. 

Example 2. RadixSort    344 
125 
333  
134 
224 
334 
143  
225  
325  
243  

Digit Sort:  
•  Select one digit 
•  Separate numbers into k piles  
  based on selected digit (e.g., Counting Sort).  

125 
224 
225  
325  

333  
134 
334 

344 
143  
243  

Stable sort: If two cards are the same for that digit,  
their order does not change.  
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RadixSort    

344 
125 
333  
134 
224 
334 
143  
225  
325  
243  

Sort wrt which  
digit first? 

The most  
significant. 

125 
134  
143  
224 
225  
243  
344  
333  
334  
325  

Sort wrt which  
digit Second? 

The next most  
significant. 

125 
224 
225  
325  
134  
333  
334  
143  
243  
344  

All meaning in first sort lost. 
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RadixSort    

344 
125 
333  
134 
224 
334 
143  
225  
325  
243  

Sort wrt which  
digit first? 

Sort wrt which  
digit Second? 

The least  
significant. 

333  
143 
243  
344 
134 
224 
334  
125 
225  
325  

The next least  
significant. 

224 
125 
225  
325  
333  
134 
334  
143 
243  
344 
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RadixSort    

344 
125 
333  
134 
224 
334 
143  
225  
325  
243  

Sort wrt which  
digit first? 

Sort wrt which  
digit Second? 

The least  
significant. 

333  
143 
243  
344 
134 
224 
334  
125 
225  
325  

The next least  
significant. 

2 24 
1 25 
2 25  
3 25  
3 33  
1 34 
3 34  
1 43 
2 43  
3 44 
 
 Is sorted wrt least  sig. 2 digits. 
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Sort wrt i+1st  
digit. 

2 24 
1 25 
2 25  
3 25  
3 33  
1 34 
3 34  
1 43 
2 43  
3 44 

Is sorted wrt  
first i digits. 

1 25  
1 34  
1 43  

2 24 
2 25  
2 43 

3 25  
3 33  
3 34  
3 44 

Is sorted wrt  
first i+1 digits. 

i+1 

These are in the  
correct order  
because sorted 
wrt high order digit  

RadixSort     



Last Updated:  12-03-13 11:11 AM 
CSE 2011 
Prof. J. Elder - 123 - 

Sort wrt i+1st  
digit. 

2 24 
1 25 
2 25  
3 25  
3 33  
1 34 
3 34  
1 43 
2 43  
3 44 

Is sorted wrt  
first i digits. 

1 25  
1 34  
1 43  

2 24 
2 25  
2 43 

3 25  
3 33  
3 34  
3 44 

i+1 

These are in the  
correct order  
because was sorted & 
stable sort left sorted 

Is sorted wrt  
first i+1 digits. 

RadixSort    



Last Updated:  12-03-13 11:11 AM 
CSE 2011 
Prof. J. Elder - 124 - 

Loop Invariant 

Ø  The keys have been correctly stable-sorted with respect 
to the i-1 least-significant digits. 
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Running Time 

Running time is ( ( ))
Where

# of digits in each number
 # of elements to be sorted
#  of possible values for each digit

d n k

d
n
k

Θ +

=
=
=
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Example 3. Bucket Sort 

Ø Applicable if input is constrained to finite interval, e.g., 
real numbers in the range [0…1). 

Ø  If input is random and uniformly distributed, expected 
run time is Θ(n).  
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Bucket Sort 
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Loop Invariants 

Ø  Loop 1 
q The first i-1 keys have been correctly placed into buckets of 

width 1/n. 

Ø  Loop 2 
q The keys within each of the first i-1 buckets have been correctly 

stable-sorted. 
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PseudoCode 

(1)Θ

(1)Θ
( )nΘ

n×

( )nΘ

Expected Running Time 

n×
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Sorting Algorithms 
Ø Comparison Sorting 

q Selection Sort 

q Bubble Sort 

q  Insertion Sort 

q Merge Sort 

q Heap Sort 

q Quick Sort 

Ø  Linear Sorting 
q Counting Sort 

q Radix Sort 

q Bucket Sort 
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Sorting:  Learning Outcomes 
Ø You should be able to: 

q Explain the difference between comparison sorts and linear 
sorting methods 

q  Identify situations when linear sorting methods can be applied 
and know why 

q Select a sorting method that is well-suited for a specific 
application. 

q Explain what is meant by sorting in place and stable sorting 

q State a tight bound on the problem of comparison sorting, and 
explain why no algorithm can do better. 

q Explain and/or code any of the sorting algorithms we have 
covered, and state their asymptotic run times. 


